
Page 1 of 19 

Errata 
Sesame v 2.x 

 

Sesame User Guide 
 
Edit Commands | Ditto Current Form (pp. 226) 
Remove the sentence “There is no undo”. Shift-F7 will undo the form copy. Add to the end of the paragraph “Read-

only LEs are not copied." 
 

Appendix 1 – Backup Application Tab (pp. 496) 
Remove the sentence: “The files created by Backup Selected Application are not immediately loaded for use as they 

would be using the similar "Save As" command.” Save As does not load the newly saved file. 

 
Utility Programs (pp. 537) 

First sentence:  ...located in the Tools subdirectory...  should read: ...located in the Utilities\Lantica subdirectory... 
Also references on this page to the path C:\Sesame should read C:\Sesame2 

 
Appendix 7 – Sesame Initialization File – sesame.ini 

The following ini file entries should be added in the appropriate sections: 
 
Look and Feel Commands (pp. 542) 

Box Styles: The box style commands allow you to set the drawing style of parts of the Sesame interface itself. Each of 
the boxes listed below affects a different kind of screen element. These settings have no effect on user-defined Forms. 

Valid settings for all box styles are: 
NONE 
FLAT 

UP 
DOWN 
THIN UP 
THIN DOWN 

ENGRAVED 

EMBOSSED 
BORDER 
SHADOW 
ROUNDED 

ROUNDED SHADOW 
 

Box Style Commands: 
BOX STYLE 
BUTTON BOX STYLE 

DOWN BUTTON BOX STYLE  
MENU BOX STYLE 
MENUBAR BOX STYLE 
INPUT BOX STYLE 

OUTPUT BOX STYLE 

WINDOW BOX STYLE 
SCROLL BOX STYLE 
SLIDER BOX STYLE  
 

Example: SLIDER BOX STYLE: FLAT 
 

BORDER COLOR: Sets the border color of many Sesame screen elements to the RGB value following the command. 
This setting has no effect on user-defined Forms. 
Example: BORDER COLOR: 255 0 0 

 
Client Behavior Commands (pp. 545-547) 
GLOBAL AUTOCOMPLETE: Tells Sesame to attempt to autocomplete entries in any text element as you type based on 
the existing values in that field. Valid settings are ON and OFF.  

Example: GLOBAL AUTOCOMPLETE: OFF 

Default: OFF 
 
DIRECTIONAL NAVIGATION: Allows the cursor (arrow) keys to navigate the form in geographic order. For example, 
with this option turned on Down Arrow is treated as "down" instead of "next". Valid settings are ON and OFF.  



Page 2 of 19 

Example: DIRECTIONAL NAVIGATION: ON 

Default: OFF 
 
JUST IN TIME COMPILATION: Causes form code to compile only when it is about to run. This can eliminate much of 
the wait associated with opening forms, though GLOBAL CODE will still compile at that time. It may cause some 

hesitation when using a form for the first time in a session, as the code in various elements is triggered and needs to 
be compiled. This hesitation will only be present for the first time you trigger a particular event. Valid settings are ON 

and OFF.  
Example: JUST IN TIME COMPILATION: ON 
Default: OFF 

 
USE BUTTON PANELS: Tells Sesame to use button panels instead of command trees based on the PANEL BUTTON 
commands in the ini file. This has the same effect as the ButtonPanel() SBasic command. Valid settings are ON and 
OFF.  

Example: USE BUTTON PANELS: ON 

Default: OFF 
 
PANEL BUTTON: If USE BUTTON PANELS is ON, you can use PANEL BUTTON entries to build your button panels. A 
PANEL BUTTON entry consists of the tree where the button is to appear, its label, and the tree command it is to run 

when clicked. This matches the ADD_ITEM capability of the ButtonPanelItem() SBasic command. Valid settings for 
tree are APPLICATION, SEARCH, UPDATE and ADD. 
 

Examples: 
PANEL BUTTON: APPLICATION "Search For Customers" "Sample Customers 

Application!Forms!Search/Update!Customers!Main Form" 
PANEL BUTTON: SEARCH "Close Form" "Search Menu!Exit Search Menu" 
PANEL BUTTON: SEARCH  "Get Customers" "Search Menu!Search Commands!Retrieve New Results (F10)" 

PANEL BUTTON: UPDATE  "Save and Exit" "Search Update Menu!Navigation!Save Record and Close Form (Shift-F10)" 
PANEL BUTTON: UPDATE  "Next Customer" "Search Update Menu!Navigation!Advance Record (F10)" 

PANEL BUTTON: UPDATE  "Previous Customer" "Search Update Menu!Navigation!Previous Record (F9)" 
PANEL BUTTON: UPDATE  "New Search" "Search Update Menu!Search (F7)" 
 
HIGHLIGHT ON ENTER: Tells Sesame whether you want existing element contents highlighted/selected whenever you 

enter an element. Valid settings are ON and OFF.  

Example: HIGHLIGHT ON ENTER: ON 
Default: OFF 

 
TABLE DISPLAYS IMAGES: Tells Sesame whether you want images to appear when in Table View. Turning on this 

option may affect Table View performance.  Valid settings are ON and OFF.  
Example: TABLE DISPLAYS IMAGES: ON 
Default: OFF 

 
Server Behavior Commands (pp. 547) 

SERVER PREINDEX RELATIONAL: Tells the Sesame server whether to optimize the speed of relational linking using a 
preindexing scheme. This optimization will only affect relational keys where the Key value contains no search 
characters. Valid settings are ON and OFF.  
Example: SERVER PREINDEX RELATIONAL: ON 

Default: ON 

 
SDesigner Commands (pp. 549) 

DESIGN PANEL ORDER: Specifies the default order and visibility of the Control Panels in Designer. Each panel has a 
number. If the number appears in the DESIGN PANEL ORDER command, that panel will appear. The panels are 

numbered as follows: 
1 = Commands 
2 = Layout Element Adder 

3 = Property Editor 
4 = Property Viewer 

5 = Advanced Element Selector 
6 = Message Log 
7 = Change Log/Advanced Undo  
Example: To have only the Property Editor, Commands and Property Viewer Control Panels appear - and in that order 

- use the following ini file entry. 

DESIGN PANEL ORDER: 314 
 



Page 3 of 19 

Security Commands (pp. 550) 

WEB SERVER PASSWORD FILE: The path to the file containing the usernames and passwords to be accepted by the 
Sesame Web Server. See the Web Capabilities section for more details.  
 
SCHEME (Pp. 543) 

Additional scheme added. 
Softgradient - Like Gradient, but less intense. 

Sesame Programming Guide 
 

The Following Functions & Features Have Been Added As Of Version 2.1  
 
Button Menu Style Interface 

Sesame 2.1 includes a new style of menu interface that uses buttons in place of command trees. For new installations, 

this is the default menu style. A complete description of this new interface is included separately. The new 
SESAME.INI file entries that control the Button Menus are listed below. 

 
MENU STYLE: Controls whether the Command Area displays the new Button Menus or the older Command Trees. Valid 
settings are BUTTONS and TREE. 
Example: MENU STYLE: TREE 

Default: BUTTONS 

 
Note to current Sesame Application Users: 

The Button Menu interface behaves differently from the Tree interface in terms of how Forms are displayed and how 
certain selections are hidden in SBasic. If you have a design from a prior Sesame version that depends on certain tree 

items being hidden, you might want to consider adding MENU STYLE: TREE to the sesame.ini file until you have an 
opportunity to adjust your application for the Button Menu interface. 

 
When button menus are used you have the option of displaying a list of database applications which can be 
conveniently opened with a single click. There are two ways of using this feature: a default method which can 
automatically list files in your Data or Samples folder, or a Custom method where you can specify one or more folders 

whose applications will be listed. In both cases all DB files will be listed, in alphabetical order. 

 
DEFAULT BUTTON DIRECTORY TYPE: Displays a list of applications when Sesame is first opened. The ONLY valid 

settings are: 
OFF - No application list 

CWD - Applications in the Current Working Directory (normally \Sesame2) 
DATA - Applications in the Data directory under the Current Working Directory 

SAMPLES - Applications in the Data\Samples directory under the Current Working Directory. There is no need to 

specify Data\Samples. 
CUSTOM - Applications in the path(s) specified by CUSTOM BUTTON DIRECTORY PATH ini file settings (See below). 

 
Example: DEFAULT BUTTON DIRECTORY TYPE: DATA 

Default: OFF 
 
Notes: The application list will only be shown if the button menu interface is used. 

If there are no applications in a particular directory then no group will be shown for that directory. 
You cannot specify another directory without using DEFAULT BUTTON DIRECTORY TYPE: CUSTOM. 

 
CUSTOM BUTTON DIRECTORY PATH: If DEFAULT BUTTON DIRECTORY TYPE is set to CUSTOM, Displays a list of 

applications when Sesame is first opened. This cannot be used without first specifying DEFAULT BUTTON DIRECTORY 
TYPE: CUSTOM. Each setting is specified as title:path. The list of applications will be grouped with the specified title. 

You can have up to 10 custom button directory paths. The path specified is relative the Current Working Directory.  
 

Example: CUSTOM BUTTON DIRECTORY PATH: Teachers:Data\School\Faculty 

Example: CUSTOM BUTTON DIRECTORY PATH: Students:Data\School\Pupils 
Default: No Default 
 
Notes: 

The application list will only be shown if the button menu interface is used. 
If there are no applications in a particular directory then no group will be shown for that directory. 

You can use / or \ as the pathname separator. 

 



Page 4 of 19 

DISPLAY RECENT APPLICATIONS: Sets whether a button group is displayed for recently used applications when 

Sesame is first opened. Valid settings are ON and OFF. 
Example: DISPLAY RECENT APPLICATIONS: OFF 
Default: ON. 
 

DEFAULT SCROLLBAR WIDTH: Sets the width in pixels of the new "as needed" scrollbars. These scrollbars appear 
when you enter a scrollable area and disappear when you leave it.  

Example: DEFAULT SCROLLBAR WIDTH: 10 
Default: 12 
 

Spell Checker 
As of version 2.1, Sesame has a Spell Checker that can be used to check spelling in any text field in both an 
interactive (automatic) and/or manual mode. The manual mode is always available. The Interactive mode is selected 
by setting an entry in the Sesame.ini file.  

 

Manual Mode 
You can manually spell check the words in any text field by selecting that field and clicking Spell Checker in the Edit 
Commands section of the Button or Tree menus as shown in the following figure.  

 

 
Spell Checking manually using the Button Menu 

 
Accept: Accepts your changes and returns your corrected value to the spellchecked field. 
Cancel: Cancels changes. 

Find Next: Highlights the next misspelled word. 
Replace: Replaces the misspelled word with the selected suggestion from the list. 

Add: Adds the highlighted word to the dictionary. 
 
You can also type directly in the text box to make corrections. 

 
Interactive Mode 
Interactive mode checks spelling as you type. As you complete each word, it will be highlighted if misspelled. While a 
word is highlighted, you can right-click on it to see suggested spellings or add the word to the dictionary. 

 



Page 5 of 19 

 
Interactive Spell checking as you type 

 
Interactive spell checking is off by default. You can turn interactive spell checking on by adding the following line to 
the SESAME.INI file: 

 
INTERACTIVE SPELL CHECKING: ON 

Valid settings are ON and OFF. 
Example: INTERACTIVE SPELL CHECKING: ON 
Default: OFF 
 

Dictionaries 

Three English dictionary files are supplied with Sesame – US (us_dictionary.txt), British (brit_dictionary.txt), and 
Canadian (canada_dictionary.txt).  
 
The dictionary.txt file, which appears in your install directory (usually Sesame2), is the active dictionary file used by 

the Spell Checker.  It is supplied as the US dictionary by default. To change the active dictionary, copy the desired 
dictionary file to dictionary.txt. 
 

The dictionary file used by the Spell Checker can also be controlled by the following sesame.ini file entry: 
 

DICTIONARY PATH: Sets a file to use for the active dictionary. 
Example: DICTIONARY PATH: D:\Words\Canada_dictionary.txt 
Default: dictionary.txt 

 
The dictionary files (dictionary.txt, us_dictionary.txt, brit_dictionary.txt, and canada_dictionary.txt) are derived from files created as part 
of the "Scowl" dictionary set. The collective work is Copyright 2000-2004 by Kevin Atkinson as well as any of the copyrights mentioned 
below:  
 
Permission to use, copy, modify, distribute and sell these word lists, the associated scripts, the output created from the scripts, and its 
documentation for any purpose is hereby granted without fee, provided that the above copyright notice appears in all copies and that 
both that copyright notice and this permission notice appear in supporting documentation. Kevin Atkinson makes no representations 
about the suitability of this array for any purpose. It is provided "as is" without express or implied warranty. 
 

Appendix 7 – Sesame Initialization File – sesame.ini 

The following ini file entries should be added to the documentation (together with those mentioned above): 

 
APPLICATION MODE: When set to LOCKED, causes Sesame to start up without a menubar, button bar, or tab labels. 
It also closes the Command Area. If you use this, you must set a startup form, or you will have no choice but to exit 

without doing anything. Application mode locking is disabled if no application has been specified to open on startup. 
Valid settings are LOCKED and UNLOCKED. 
Example: APPLICATION MODE: LOCKED 

Default: UNLOCKED 
 

REPORT PAGE BREAK ALWAYS: Causes a CSS page break to be inserted instead of a horizontal line in HTML reports 
when previewed. If you have reports with forced page breaks and you want to be able to print them directly from your 
browser preview, set this to ON. Valid settings are ON and OFF. 

Example: REPORT PAGE BREAK ALWAYS: ON 
Default: OFF 

 
 

 



Page 6 of 19 

The Following Have Been Added As Of Version 2.5 
 
Appendix 1 – Sesame Initialization File – sesame.ini 

The following ini file entries should be added to the documentation (together with those mentioned above): 

 
FIELD EDITOR FONT SIZE: When set as FIELD EDITOR FONT SIZE: <n> it defines the size of the font used in the F6 

Field Editor Window. Valid settings are between 4 and 42.  
Example: FIELD EDITOR FONT SIZE: 16 

Default: Uses operating system font settings 
 
Appendix 1 – Network Administration (pp 491) 

A new button has been added to the Notification tab of Server Administration that allows you to refresh the list of 
clients showing in the window.  Use this to see the currently connected clients at any point in time. 

 

 
 
Appendix 8 – Network Administration (pp 555) 

Startup Switches 
 
- A new command line option for server admin command: Unload 

[-command <ServerName> <AdminPassword> <UNLOAD> <Application_Title> 
 

EXAMPLE:  
Sesame.exe -command MyPC hello UNLOAD "Sample Customers Application”   

- Causes server to unload the Customers.db application (referred to by its application TITLE only (no path)).  

Warning: This will immediately unload an application that is in use by users or XResultSet commands.  Do not do use 
in those circumstances! 

 
The Following Changes Have Been Made in Version 2.5.1 
Sesame 2.5.1 is a maintenance release repairing some annoyances and problems reported in version 2.5.  To view 

these fixes View  the Change Log at www.Lantica.com 
 

- A New error message if the client is completely unable to connect to the server.  
- Germanic numeric formats for money (comma as decimal point) can be searched using that format.  
- A new sesame.ini entry "DEFAULT SEARCH SYNTAX: CASELESS REGEX". RegEx is normally case sensitive. This entry 

makes RegEx searches case insensitive. 
- A change so that apps with a startup form and security place user in Login Box when started 

 

Note: As of this version, Sesame no longer includes the Hoard library and instead uses the memory manager 
provided by your operating system. Because of this, you may find that the Sesame process takes longer to exit 
after closing Sesame than with earlier versions.  
 



Page 7 of 19 

The Following Changes Have Been Made in Version 2.5.2 
 
Appendix B - Startup Switches  

A LOAD command is available for the -command switch, which causes the specified Sesame Server to load the 
specified database.  

 
sesame -command server_name hello LOAD Customers.db 

 

  
The Following Changes Have Been Made in Version 2.5.3 
 

Appendix 7 – Sesame Initialization File – sesame.ini 
The following ini file entries should be added to the documentation (together with those mentioned above): 

 

MACROS RETAIN FOCUS: Setting this to ON causes the focus to stay where macros leave it rather than attempting to 
return focus to the element from which the macro was launched. 
Valid settings are ON and OFF 
Example: MACROS RETAIN FOCUS: ON 

Default: OFF  
 



Page 8 of 19 

Sesame Programming Guide 
 
Page 119, State Information Commands 

@preview should read @PreviewMode 
 

Page 348, @RedirectProcess(command, feed) 

Change the next to last line on the page from ‘@RedirectProcess("DIR", "")’  
to read ‘@RedirectProcess("cmd /C DIR", "")’ 

 
Page 394-395, @SpecCommand(), @omitted. 

In all the examples vStr = SpecCommand(SPEC_..)  should read  vStr = @SpecCommand(SPEC_..) 
 

Page 395, @SpecCommand() 
.. SPEC_TYPE_RETRIEVE, "Last Name = m.."   should read  ..SPEC_TYPE_RETRIEVE, "Last Name = w.." .. 

 
P395, Split(), code example.  

The line For i = 1 to 5   should read  For n = 1 to 5 
 

P413, @SumListValues.  
"The example above will write the number 10375 to the writeln window."  should read "The example above will write 

the number 9475 to the writeln window." 
 
P423, @TreeItemVisibility(path) 

The last line of code should read: 
@RevealTreeItem("Sample Customers Application!Forms ..) 

 
P511, Index  
#sbasic_include.sbas, 87 should appear on P515 as sbasic_include.sbas, 87 
 

The following functions have been added as of version 2.0.3 
 
@GetSelectionContents() 

Type: Operating System 
Parameters: None 

Returns: string 
 
Returns the contents of the desktop selection buffer (clipboard). 

 
This example prints the contents of the clipboard to the WriteLn window. 

WriteLn(@GetSelectionContents()) 
 

@IterateGlobalValues() 

Type: State Information 
Parameters: None 
Returns: string 
Returns a semicolon-delimited string listing the names of the current Global Values. 

 

If your application has Global Values as follows: 
gvLastInvoice - 10034 
gvFindRecord - A041B 
gvCompanyName - ABC Manufacturing 

 
The following code will write gvLastInvoice, gvFindRecord, and gvCompanyName to the WriteLn window. 

WriteLn(@IterateGlobalValues()) 
 
This example writes out the names and current values of all Global Values. 

var vList as String 
var vVal as String 
var vLoop as Int 
var vCount as Int 

 

        vList = @IterateGlobalValues() 
        vCount = @CountStringArray(vList) 



Page 9 of 19 

        For vLoop = 1 To vCount 

                vVal = @AccessStringArray(vList, vLoop) 
                If @Len(vVal) > 0 
                { 
                        WriteLn(vVal + ": " + @GlobalValue(vVal)) 

                } 
        Next 

 
See Also: GlobalValue, @GlobalValue 
 

The following functions have been added as of version 2.0.4 
 
@Mode() 

Type: State Information 
Parameters: None 
Returns: int 
 

@Mode() returns an integer that identifies the current Sesame mode. 

 0 = Add Data Mode 
 1 = Update Mode 
 2 = Search Mode (Retrieve Spec) 
 3 = No Mode (Startup Form) 

 4 = Dialog Mode (Shown with @FormAsDialog) 
This code, if added to the On Retrieve Spec Open event of the form, will display a picklist of cities in the 
CUSTOMERS.db sample database on opening search mode: 

 
 If @Mode() = 2 Then 

 { 
  City = @XUserSelect(@Filename, "City") 
 } 
 

See Also: @Add, @Update, @IsNew 

 
@SpecCommand(operation, spec_type, command_string, ...) 
Type: Spec Management 
Parameters: operation as int, spec_type as int, command_string as string, ... as string 

Returns: string 
 
@SpecCommand provides a single function that can perform a set of spec commands on any of the Sesame runtime 

spec types. @SpecCommand takes three required arguments, operation as an integer, spec_type as an integer, and 
command_string as string It also accepts a variable number of optional arguments: ... as a string. 

 
operation can be: 
SPEC_OPERATION_LOAD 
SPEC_OPERATION_SAVE 

SPEC_OPERATION_RUN 

SPEC_OPERATION_VIEW 
SPEC_OPERATION_SET 

SPEC_OPERATION_CLEAR 
SPEC_OPERATION_LIST 

 

spec type can be: 
SPEC_TYPE_RETRIEVE 

SPEC_TYPE_SORT 
SPEC_TYPE_EXPORT 

SPEC_TYPE_IMPORT 
SPEC_TYPE_MASS_UPDATE 
SPEC_TYPE_COPY 

SPEC_TYPE_RESTRICTION 
SPEC_TYPE_TABLE 

SPEC_TYPE_QREPORT 
 

The command_string argument can can repeated to send multiple strings. This function returns the spec as a string 
array when used with the VIEW operation. 



Page 10 of 19 

 

Examples: 
// Loads an already saved retrieve spec for use 
vStr = @SpecCommand(SPEC_OPERATION_LOAD, SPEC_TYPE_RETRIEVE, "MyRetrieveSpec") 
  

// Saves the currrent retrieve spec as "MyName" 
vStr = @SpecCommand(SPEC_OPERATION_SAVE, SPEC_TYPE_RETRIEVE, "MyName")  

 
// Runs the currently loaded retrieve spec 
vStr = @SpecCommand(SPEC_OPERATION_RUN, SPEC_TYPE_RETRIEVE, "")  

 
// Returns the current retrieve spec to the variable "vStr" 
vStr = @SpecCommand(SPEC_OPERATION_VIEW, SPEC_TYPE_RETRIEVE, "")  
 

// Set the current retrieve spec so that last name begins with "w" and first name begins with "w" 

vStr = @SpecCommand(SPEC_OPERATION_SET, SPEC_TYPE_RETRIEVE, "Last Name=m..", "First Name=w..")  
 
// Clears the current retrieve spec 
vStr = @SpecCommand(SPEC_OPERATION_CLEAR, SPEC_TYPE_RETRIEVE, "")  

 
// Returns a list of saved retrieve specs 
vStr = @SpecCommand(SPEC_OPERATION_LIST, SPEC_TYPE_RETRIEVE, "")  

 
@Trap(LE) 

Type: Macros and Program Control 
Parameters: LE as element reference 
Returns: int 

 
Setting a trap with Trap() allows you to keep focus in an element until you release the trap. @Trap allows you to 

check the state of the trap in the On Element Exit event and act accordingly. 
 
@Trap can return the followng states as defined in the sbasic_include.sbas file: 
TRAP_NO_TRAP - 0 (Element has no trap set) 

TRAP_HAS_TRAP - 1 (Element has a trap which will activate when user enters the element) 

TRAP_IS_TRAPPED - 2 (Element trap is currently activated. User is trapped.) 
 

To set and release a trap, you need to put code in several places. The example below traps the user in the element 
until it is not blank. Once the trap condition is met, it releases the user and performs additional tasks with the 

validated value. 
 
In GLOBAL CODE 

#include "sbasic_include.sbas" 
 

In the On Element Entry event 
// Sets the trap 
Trap(ThisElement, TRAP_HAS_TRAP) 
 

In the On Element Exit event 

// Check if user is trapped 
If @Trap(ThisElement) = TRAP_IS_TRAPPED 

{ 
 // Check trap condition 

 If Not @IsBlank(ThisElement) 
 { 
  // Release the trap 

  Trap(ThisElement, TRAP_NO_TRAP) 
 } 

 Else 
 { 
  // Show error message 
  @MsgBox(@ElementName(ThisElement) + " may not be blank!", "", "") 

 } 

} 
Else 



Page 11 of 19 

{ 

 // User has actually exited the element. Do stuff. 
 WriteLn(ThisElement) 
} 
 

See Also: Trap 
 

Trap(LE, state) 
Type: Macros and Program Control 
Parameters: LE as element reference, state as int 

Returns: Nothing 
 
Setting a trap allows you to keep focus in an element until you release the trap. When a trap is set, it activates when 
focus enters the element. At this point, each time you try to leave the trap element, its On Element Exit programming 

runs allowing you to test whether to release or reset the trap. 

 
To effectively set a trap, Trap() should be placed and checked in several places. Trap() operates in Form View only, 
not in Table View. A trap will only be activated if the specified element has On Element Exit programming. If no On 
Element Exit programming is present, the trap will not activate. 

When setting a trap, be careful not to check a condition that cannot be corrected by changing the value in the trap 
element. 
 

To trap the user in an element named CustomerID: 
#include "sbasic_include.sbas" 

 Trap(CustomerID, TRAP_HAS_TRAP) 
 
To release the trap set above: 

#include "sbasic_include.sbas" 
 Trap(CustomerID, TRAP_NO_TRAP) 

 
See @Trap() for a complete usage example. 
 
See Also: @Trap 

 

XResultSetOpenForm(rs, form_name) 
Type: External Database Application Management 

Parameters: rs as int, form_name as string 
Returns: Nothing 

 
This command opens the specified form in Update mode with records pre-retrieved.  
This function accepts two arguments:  

 
The handle for the result set to use - This must be a result set from a database in the current file. If using 

@XResultSetSearch, specify @FN as the first argument. You cannot use this command to open forms in other db or 
dsr files. 
 
The name of the form to open - The specified form must be a form attached to the same database as the one from 

which the result set records were retrieved. 

#include "sbasic_include.sbas" 
 

var vRSHandle as Int 
var vNoOfRecords as Int 

  
 vRSHandle = @XResultSetSearch(@FN, "Customers", SEARCH_MODE_AND, SEARCH_SYNTAX_QA, 
"!State=PA") 

 If vRSHandle > -1 
 { 

  vNoOfRecords = @XResultSetTotal(vRSHandle) 
  If vNoOfRecords > 0 
  { 
   XResultSetOpenForm(vRSHandle, "Main Form") 

  } 

  Else 
  { 



Page 12 of 19 

   @MsgBox("No records to display.", "", "") 

  } 
  XResultSetClose(vRSHandle) 
 } 
 

See Also: XResultSetClose, XResultSetCreateNewRecord, @XResultSetCurrentForm, XResultSetCurrentPosition, 
@XResultSetCurrentPosition, XResultSetDeleteRecord, @XResultSetForm, XResultSetLocked, 

XResultSetRemoveRecord, XResultSetReparent, @XResultSetSearch, XResultSetSort, @XResultSetTotal, 
@XResultSetValue, XResultSetValue 

 
The following functions & features have been added as of version 2.0.5 

@XResultSetParent(rs) 
Type: External Database Application Management 

Parameters: rs as int 

Returns: int 
 
This function is used to obtain a result set containing a single record - the natural parent of the current record in the 
result set passed in as the only parameter. This allows you to access the natural parent of a child record directly, even 

if there is no matching key value. After any operations have been completed on that single record, the parent result 

set should be closed. 
 
Even though the naturally linked subrecords in the Countries sample application have no matching key values, you 
can still use @XResultSetParent to get information from the parent record while looking at a subrecord. The example 

Mass Update below is designed to be run on the Cities records directly. It prints and counts only those City records 
where the parent Country record is in the Continent of Asia and has an area of larger than .99. 

GLOBAL CODE 

stat sRS as Int 

stat sTotal as Int 

stat sCount as Int 

 

 sRS = @XResultSetForm("") 

 sTotal = @XResultSetTotal(sRS) 

 sCount = 0 

 

MASS UPDATE 

var vContinent as String 

var vArea as Double 

var vPRS as Int 

var vCount as Int 

 

 If sRS > -1 

 { 

  vPRS = @XResultSetParent(sRS) 

  If vPRS > -1 

  { 

   vCount = @XResultSetTotal(vPRS) 

   If vCount = 1 

   { 

    vContinent = @XResultSetValue(vPRS, "Continent") 

    vArea = @ToNumber(@XResultSetValue(vPRS, "Area")) 

    If (vContinent = "Asia") And (vArea > .99) 

    { 

     WriteLn(City) 

     sCount = sCount + 1 

    } 

   } 

   Else 

   { 

    WriteLn("Error: " + @Str(vCount) + " parent records.") 

   } 

   XResultSetClose(vPRS) 

  } 

  Else 

  { 



Page 13 of 19 

   WriteLn("No parent record.") 

  } 

  If @ResultSetCurrentPosition() = sTotal 

  { 

   WriteLn(@Str(sCount) + " cities are in the continent of Asia and in a 

country with an Area larger than .99.") 

   XResultSetClose(sRS) 

  } 

 } 

 
@XResultSetRunProgram(rs, global_program, program, test_only) 
Type: External Database Application Management 

Parameters: rs as int, global_program as string, program as string, test_only as int 

Returns: string 
 

This command runs an SBasic program, specified as a string argument, on every record in a result set. It returns as a 
string any content written using Write or WriteLn. 

 
The programming is sent to the engine to be executed. Because it runs on the engine, the programming must use 
field names instead of element names. No commands that reference the user interface, forms, or reports are legal in 

the supplied program. For security, the File I/O commands, Shell commands and Process commands are disabled by 
default. These can be optionally allowed using the SERVER CODE FILE I/O and SERVER CODE SHELL INI file entries, 

but you should consider carefully before doing so. 
 

NOTE: Because this method of working with a group of records works directly on the engine, it is much faster than a 
normal mass update, but it also is able to provide less feedback. You should always test this command using a backup 

of your data to make sure that is doing what you intend.  

 
Arguments: 

rs - Handle to a result set 
 

global_program - Programming that you would type into the GLOBAL CODE area 
 
program - Programming to run on each record in the result set 

 
test_only - Flag indicating whether to actually run the program. 0 runs the program. 1 tests whether the program 

compiles without running it.  
 

As the program compiles on the engine, the syntax error interface available in the Programming Editor is not 
available, however, @Error will be set if the program fails to compile. To test your program, set test_only to 1 and 

check @Error. 

 
For easier assembly of the program to be run into a string, you can write it using single quotes or another unlikely 

"placeholder" character where double quotes would normally appear. You can then use @Replace to replace the 
placeholder with double quotes. The example below sets Company to "No company name provided" on any record 

where Company is blank.  

 
#include "sbasic_include.sbas" 

 

var key as int 

var pgm as string  

var str as string 

  

 // Use single quotes to for strings internal to the program string 

 pgm = "XCompany = 'No company name provided'" 

 

 // and replace them with double quotes 

 pgm  = @Replace(pgm, "'", @Chr(34)) 

 

 key = @XResultSetSearch(@FN, "Customers", SEARCH_MODE_AND, SEARCH_SYNTAX_QA, "!Company==") 

 if(key > -1) 

 { 

  str = @XResultSetRunProgram(key, "", pgm, 0) 

  If @Error 

  { 

   WriteLn("Program failed to compile.") 



Page 14 of 19 

  } 

  XResultSetClose(key) 

 } 

 
 

 

@XResultSetSubSet(rs, field_name) 
Type: External Database Application Management 
Parameters: rs as int, field_name as string 
Returns: int 

 

This function accepts a currently open result set handle and the name of a subrecord field. It returns a handle to a 
result set representing the naturally linked records that are subrecords of the current parent record in the open result 

set. 
 

This function accepts two arguments: the handle of the parent result set and the name of the SUBRECORD field in the 
parent record that defines the natural link. 
 

This allows you to quickly access the natural children of a given parent record without needing to do key-based 
lookups. The example below can be used in the Countries sample application in a report that has a Value Box bound 

to Country and an Unbound Value Box named Cities. The code prints the number of Cities subreords for each parent 
Countries record on the report. 
 

#include "sbasic_include.sbas" 

 

var vPRS as Int 

var vCRS as Int 

var vCount as Int 

 

 vCount = 0 

 

 // Get current parent record 

 vPRS = @XResultSetSearch(@FN, "Countries", SEARCH_MODE_AND, SEARCH_SYNTAX_QA, "!Country=" + 

Country) 

 If vPRS > -1 

 { 

  // Get child records 

  vCRS = @XResultSetSubSet(vPRS, "Cities Subform") 

  If vCRS > -1 

  { 

   // Set report column to count of cities for this country 

   vCount = @XResultSetTotal(vCRS) 

   XResultSetClose(vCRS) 

  } 

  XResultSetClose(vPRS) 

 } 

 Cities = vCount 

 
Code Builder 

The Code Builder creates SBasic code to perform common "one-click" tasks such as print your form, run a report, or 
sort your records. If you want to see an example of how to do something in SBasic, the Code Builder can often 

provide you with a prebuilt starting point which you can use as-is or customize to your specific needs. 

 
If an element or layout supports code building, the Code Builder appears on its right-click menu. The Code Builder 

lists actions for which SBasic code can be automatically created. 
 

When you select an action, Sesame will write the SBasic for that action and assign it to the element. You can see and 
edit the generated code by looking in the Programming Editor. The Code Builder may ask questions or offer additional 
options depending on the action selected. 

 



Page 15 of 19 

 
Code Builder Example – Command Button 
 
 

Note: Currently, Code Builder is supported only for command buttons, but code building support may be expanded to 
include more elements in future releases. 

 
Visual indicators for visibility and specified width on Report Elements. 
Invisible report elements display "I" near the top. Report elements with a specified width (not zero) display "W". 

 
 

 
Report Indicating Column Width Set (W) 
 
Switch to Form View button on Table View 

When in Table View, a button appears in the upper left corner of the table. Clicking this button switches back to Form 

View the same way as Shift-F6 does. This button appears both on a main table view and also on a table view subform.  
Keep in mind that a subform set to start in table view cannot be toggled to form view, so the button will not appear in 

this case.   
 

 
Table View Return Button 
 

Mass Update Engine 
Another option for Mass Update is Mass Update Engine. This option is available under the Results branch of the 
Command Tree. Mass updates run with Mass Update Engine run on the engine instead of on the client. Mass updates 

run with this option will run many times faster than an ordinary mass update, but they are also subject to certain 
limitations.  

 
Differences with Mass Update Engine 

• Your forms are not available to engine-side code. Your programming must refer to the underlying field names, 
not to element names. 

• You do not have a GUI to affect. Commands that change colors, pop up lists, etc. are not available and will fail 

to compile. The exception to this is Write/WriteLn. Any content created during the mass update using Write or 
WriteLn will be shown in the Slate after the mass update completes. 

• For security, the File I/O commands, Shell commands and Process commands are disabled by default for 
engine-side code. These can be optionally allowed using the SERVER CODE FILE I/O and SERVER CODE SHELL 

INI file entries, but you should consider carefully before doing so. 



Page 16 of 19 

• While you write your Mass Update in the Programming Editor as usual, the Test function cannot be used to 

test your code for syntax errors. When you run Mass Update Engine, there is a Test Syntax option on the 
confirmation dialog which you can use to test your code for errors.  

 

 
Mass Update Engine confirmation dialog. 

For another option for running engine-side code on a group of records, see the @XResultSetRunProgram command. 
 

 
Orphan Search - Finds subrecords that do not have a naturally linked parent record. This search command is 

intended to be used standalone on a form bound to records that are linked as natural subrecords to a parent 

database. This allows you to easily locate subrecords that do not have a parent record. 
 

Orphan Search respects the criteria in the Retrieve Spec and will only find orphan records that meet the criteria. 
 

Note: Orphan Search is designed to operate on naturally linked subrecords. If you use Orphan Search on a database 
that has no natural link to a parent database, the results are unpredictable. Orphan Search will not reliably find 

relational orphans, only natural orphans. 
 
For information on reparenting natural orphans, see the Reparent tree command. 

 
Reparent 

The Reparent tree command naturally links each record in your result set to a parent record based on matching 
values. Since the links are natural, the matching values are only needed until the linking is done. If a record already 

has a natural parent, it is unlinked from that parent and linked instead to the parent you specify. 

 
If you need to periodically import new natural subrecords for existing parents, this command allows you to import the 
records standalone, and then quickly link them to their proper parent record. This command is also useful for 
parenting orphaned subrecords, linking records converted from Q&A, changing from relational to natural linking, and 

so on. 

 
When you select Reparent, the dialog box shows a list of the parent fields and a list of the child fields. Select one field 
from each to specify which fields should match. For best results, select fields of the same data type. 
 

When you click Accept, each record in your result set will be naturally linked to the parent record where the value in 
the parent key field you selected matches the value in the child key field you selected.  

 

 
Reparent dialog. 

 
Reparent can only be used on a form bound to records that are linked as natural subrecords to a parent database. 

 
For information on finding natural orphans, see the Orphan Search tree command. 

 
Appendix 7 – Sesame Initialization File – sesame.ini 

The following ini file entries should be added in the appropriate sections: 

 
Server Behavior Commands 

SERVER CODE FILE I/O: Sets whether File I/O commands are allowed to run during engine-side code execution. If 
these commands are not allowed, a compile error will be thrown when the code attempts to run. This setting affects 



Page 17 of 19 

@CreateDirectory and all commands listed as type File I/O in the Sesame Programming Guide except for @Insert. 

Valid settings are ON and OFF. 
 
Note: Consider carefully before turning this option on. 
Example: SERVER CODE FILE I/O: ON 

Default: OFF 
 

SERVER CODE SHELL: Sets whether shell and process commands are allowed to run during engine-side code 
execution. If these commands are not allowed, a compile error will be thrown when the code attempts to run. This 
setting affects the following SBasic commands: @Shell, @ASynchShell, CreateAProcess, @RedirectProcess. Valid 

settings are ON and OFF. 
 
Note: Consider carefully before turning this option on. Engine-side shell access can be dangerous.  
Example: SERVER CODE SHELL: ON 

Default: OFF 

 
The following features & changes have been added as of version 2.0.6 
 

@ElementType() (pp. 220) 
 

New defines have been added to sbasic_include.sbas for additional Layout Element (LE) types  
LE_TYPE_TABLE2_INPUT - 1021*  

LE_TYPE_STATIC_SCROLL_REGION - 1022  
LE_TYPE_STATIC_PAGE_MARKER - 1023  
LE_TYPE_TEXT_EDITOR - 1024  

 
Example change for addressing editable elements by type:  

(n > 999 and n < 1009) or (n = 1024) 
 

Ftp() (pp. 259)  

The last argument - source - is the text to upload. Not the name of a source file. 
 

The example should read: 
Ftp("www.exampleftpserver.com", "mylogin", "mypassword", "online.html", "This is some text.") 
 
@PrintAReport() (pp. 329) 

New option for mode added to sbasic_include.sbas.  
REPORT_MODE_HTML_GENERATE  
 
This option tells Sesame to generate the report file, but not launch it in the browser. 
 

MergeFilePrint() (pp. 298-300) 
Fold argument may now also be set to 2. This attempts to fold to end of line. 
 

The following features & changes have been added as of version 2.1 
 
SetCopyBuffer(str) 

Type: Operating System 
Parameters: str as string 
Returns: Nothing 

 
Sets the contents of the desktop selection buffer (clipboard) to str. 

 
This example sets the contents of the clipboard to "John Doe": 
SetCopyBuffer("John Doe") 

 
This example sets the contents of the clipboard to the value in the Company field: 
SetCopyBuffer(company) 

 
See Also: @GetSelectionContents() 

 



Page 18 of 19 

Help System 

Using F1 or selecting Help form the Help menu now brings up a complete User Guide or Programming Guide in PDf 
format. These Guides are fully searchable with your PDF viewer. Custom help set on elements remains unchanged. 

 
You can control where Sesame looks for these Guides with the following sesame.ini file entries: 
USER GUIDE FILENAME: Sets the location of the Sesame User Guide pdf. 
Example: USER GUIDE FILENAME: D:\Docs\Sesame_2_User_Guide.pdf 
Default: Sesame_2_User_Guide.pdf 

 
PROGRAMMING GUIDE FILENAME: Sets the location of the Sesame Programming Guide pdf. 
Example: PROGRAMMING GUIDE FILENAME: D:\Docs\Sesame_2_Programming_Guide.pdf 
Default: Sesame_2_Programming_Guide.pdf 

 
The following New Functions have been added as of version 2.5.3 
 

@LocalCWD() 
Type: Operating System 

Parameters: none 
Returns: string 

 
@LocalCWD returns the current working directory on the client.  
 

var vCWD as String 

 

 vCWD = @LocalCWD() 

 WriteLn(vCWD) 

 

LocalCWD(path) 

Type: Operating System 
Parameters: path as string 

Returns: Nothing 
 
LocalCWD sets the current working directory on the client. After use, it is recommended that you set the current 

working directory back to the original value. 
var vCWD as String 

 

 vCWD = @LocalCWD() // Get current CWD 

 WriteLn(vCWD) 

 LocalCWD("c:\Windows") // Change CWD 

 WriteLn(@LocalCWD()) 

 LocalCWD(vCWD)  // Reset CWD to original value 

 WriteLn(@LocalCWD()) 

 
@MoneyToWords(val) 

Type: Text/String 
Parameters: val as string 
Returns: string 

 
@MoneyToWords() converts a numeric or currency value to cardinal text like that used for printing checks. So, 

@MoneyToWords("165.07") would return "one hundred sixty-five and 07 / 100 " 
var vWords as String 

 

 vWords = @MoneyToWords(Credit_Limit) 

 WriteLn(vWords) 

 

MouseCursorDefault() 

Type: Operating System 

Parameters: none 
Returns: nothing 
 
This allows an SBasic programmer to indicate that the system is not busy. 

MouseCursorWait() 



Page 19 of 19 

Loiter(3000) 

MouseCursorDefault() 

 
MouseCursorWait() 
Type: Operating System 

Parameters: none 
Returns: nothing 
 

This allows an SBasic programmer to indicate that the system is busy. 
MouseCursorWait() 

Loiter(3000) 

MouseCursorDefault() 

 
 
Q&A Database Translation Guide 
 
Types of Translation Errors  
You will encounter two main types of translation errors in the log.  
 
Invalid Data  
These errors take the following form:  
[Field Name] cannot be retained with value [Illegal Value]  
 
This means that one of your records contains a value that cannot be converted to the specified type. For example "TBA" 
in a Date field. You will get one of these messages for each invalid value in each record. Because of this, you may see a 
lot of them. Don't be intimidated by a large number of these error messages. Almost all the errors can be cleared with a 
simple Mass Update of the field to fix those records where the user entered an invalid value.  
 
Illegal Field Name  
These errors take the following form:  
Warning: layout element name [Field Name] contains operator characters  
Warning: layout element name [Field Name] resolves to a reserved keyword  
Warning: layout element name [Field Name] resolves to a number  
 
All these basically mean the same thing. You have an illegal field name. Go back to Q&A, legalize your field names and 
try the translation again. 


