

This free back issue of
THE QUICK ANSWER is provided courtesy of…

The Monthly Newsletter for Sesame Database Manager

http://www.insidesesame.com
Read a Free Issue of Inside Sesame!

AND

Makers of Sesame Database Manager
Compatible with Symantec Q&A™

http://www.lantica.com

http://www.insidesesame.com/
http://www.lantica.com
http://www.insidesesame.com/
http://www.insidesesame.com/IS0601MBD.pdf
http://www.lantica.com/
http://www.lantica.com/

© Marble Publications, Inc. 1The Quick Answer ▲ January 1996

January 1996

Merge Your Databases, David Dvorin 1

README.1ST, Tom Marcellus 2

QuickTip: XUserselect Cases, Alec Mulvy 4

@Help, David Dvorin ... 5

QuickTip: Report Problem Solved, Michael Schein .. 6

C O N T E N T SC O N T E N T S
Streamline Tasks with Gadgets, Tom Marcellus 7

QuickTip: Record Tagging/Untagging, Bob Clark 14

The Program Spec: GOSUBs, Jeff Nitka 15

QuickTip: Text to Money, Jim Pogany 16

How to Merge Your Databases
What do you do when you have several databases with information you need to combine in a single
database? Without proper preparation, you could wind up with a real mess on your hands. Make a clean job
of it by following these “tricks of the trade.”

By David Dvorin

YOU might need to combine information from
several databases into one. For example, you
might have information about the same people

in several databases that you’d like to have in a single
database. Although Q&A can’t perform the task
directly, I’ll show you a way to do it.

Requirements
To merge several Q&A databases into one, the
following three components are necessary.

• A database that combines all the information you
want from all the related databases. I’ll call this
the resulting database. The databases whose
information you want to merge into the resulting
database I’ll call the source databases.

• A field that provides a common link between the
records in each database.

• A Mass Update Spec that performs the merge
operation.

Let’s look at each component in turn.

The resulting database
The purpose of the resulting database is to combine
the desired information from the records in the source
databases.

You can create the resulting database by making a
copy of the source database that contains the most
information you want to merge with the resulting
database. Use Q&A’s Backup option (on the File /
Utilities menu) to make the copy. This way, all the
records are copied along with the form design, and it
takes only a moment.

Next, redesign the copied database’s form,
adding the fields you want to merge from the other
source databases.

The linking field
Add one more field to each source database and the
resulting database—a field to uniquely identify each

Continues on page 3

The independent monthly guide to Q&A expertise

T · H · EQuick Answer

2 The Quick Answer ▲ January 1996 © Marble Publications, Inc.

Volume 7, Issue 1

Editor Tom Marcellus
Publisher Michael Bell

Copy Editor Laurie Moloney

The Quick Answer (ISSN 1052-3820) is
published monthly (12 times per year)
by Marble Publications, Inc., 9717
Delamere Ct., Rockville, MD 20850. Cost
of domestic subscriptions: 12 issues, $79;
24 issues, $142. Outside the U.S.: 12
issues, $99; 24 issues, $172. Single copy
price: $10; outside the U.S., $12.50. All
funds must be in U.S. currency. Back
issues are available upon request, for the
same price as a single copy.

Second-class postage pending at
Rockville, MD. POSTMASTER: Send
address changes to The Quick Answer, PO
Box 9034, Gaithersburg, MD 20898-9034.

Copyright © 1995 by Marble Publications,
Inc. All rights reserved. No part of this
periodical may be used or reproduced in
any fashion whatsoever (except in the
case of brief quotations embodied in
critical articles and reviews) without the
prior written consent of Marble
Publications, Inc.

Address editorial correspondence,
@HELP questions, or requests for
special permission to: Marble
Publications, Inc., The Quick Answer, PO
Box 9034, Gaithersburg, MD 20898-9034.
Phone 800-780-5474 or 301-424-1658. Fax
301-424-1658. CompuServe 73370,1575.
Prodigy NEPY97A.

For Q&A technical support, call
Symantec: 503-465-8600.

Q&A is a trademark of Symantec Corp.
Other brand and product names are
trademarks or registered trademarks of
their respective holders.

This publication is intended as a general
guide. It covers a highly technical and
complex subject and should not be used
for making decisions concerning specific
products or applications. This publication
is sold as is, without warranty of any
kind, either express or implied, respecting
the contents of this publication, including
but not limited to implied warranties for the
publication, quality, performance,
merchantability, or fitness for any
particular purpose. Marble Publications,
Inc., shall not be liable to the purchaser or
any other person or entity with respect to
any liability, loss, or damage caused or
alleged to be caused directly or indirectly
by this publication. Articles published in
The Quick Answer do not necessarily
reflect the viewpoint of Marble
Publications, Inc.

README.1ST

MOMENTS after plucking his November Quick
Answer from the mailbox, Jeff Nitka was on the
phone reading me The Riot Act. The crux of his

harangue was a tip of mine on page 9 of that issue (“Too Many
Unhappy Returns”) that contains—well, let’s be charitable—a
half-truth. To avoid a Too many Returns error message when
Gosubs and Returns are executing, I advise to “. . . make the
Return field read-only so you can’t inadvertently move the
cursor into it.” But as Jeff pointed out, that won’t cut it because
although the content of a read-only Return field is uneditable
from the keyboard, its program can still trigger, and you’ll
receive the error message when there’s no pending Gosub to
return to.

Jeff handles it by placing a small invisible field directly in
front of the Return field, and programs it with a Navigation
command to deflect the cursor. Fine, but even that isn’t bullet
proof. Suppose, for example, you press Down arrow from a
field directly above the Return field?

The point is, you should barricade any field you want to
keep the cursor away from except when your programming
tells it to go there.

Did you know you can add gadgets to your Q&A 5.0 forms
that work like the buttons, check boxes, dialog boxes, and drop-
down lists you find in Windows? I demonstrated some of these
at the September Q&A 5.0 Master’s Seminar in Washington,
D.C., and raised a few eyebrows. Find out how you, too, can
take advantage of these labor-saving gadgets to simplify data
entry.

Suppose you have information about the same people in
more than one database, and you’d like to combine that
information. The problem is Q&A doesn’t know how, and you
might not either. Merging databases can be tricky. The key, as
Dave Dvorin shows, is in careful planning and preparation.

Go for those GOSUBs with Jeff Nitka in this month's
Program Spec column.

Final call to send in your ad for The Quick Answer’s
upcoming Ad Data Advertiser’s Supplement. If you’re a Q&A
consultant, developer, user group leader, have a specialty
database you'd like to distribute, or can supply Q&A-
compatible add-on products, you must act by January 15 to
make the February supplement. For details on preparing and
placing your ad, see the November issue, or call or fax us at the
numbers on this page.

Tom Marcellus
Editor

The independent monthly guide to Q&A expertise

T · H · EQuick Answer

© Marble Publications, Inc. 3The Quick Answer ▲ January 1996

record within each database and to identify the record
as the same record across all the databases involved.
This field will provide the link between the resulting
database and the source databases.

If the pertinent databases contain people or
companies, your best choice for the linking field
might be a telephone number because it’s unique,
especially if it includes the area code. If the source
databases don’t all include a telephone number field,
then you can use a combination of the first name, last
name, and address.

There are a number of issues to keep in mind
when deciding on a linking field. First, it must have
the same structure in all the applicable databases. You
can’t use the telephone number as the linking field in
one database, and a different linking field in another.
Nor can you use a telephone number without an area
code as the linking field in one database, and a
telephone with the area code in another, though you
could strip the area code from the telephone number
in one database, then use the phone number without
the area code as a linking field. (You could strip the
area code by running a Mass Update on the database,
with a programming statement that returns only the
phone number. Or, the Update statement you use to
merge the data into the resulting database could
include a command to ignore the area code in the
source database.) Also, no linking field value can be
no more than 16 characters in length because this is
the maximum number of characters that Q&A will
treat as unique.

When you’ve decided on the linking field, add it
as necessary to each source database and the resulting
database. Then perform a Mass Update on each
database to create the unique link field value.
Suppose, for example, you decided to use the first six
characters of a person’s last name, plus the first three
characters of the first name, plus the ZIP code to
create a unique 14-character linking value. In each
database, your Update Spec would include a program
such as this:

First Name: #1
 Last Name: #2
 ZIP Code: #3
Link Value: #4 = @Left(#2,6) + @Left(#1,3) + #3

Using this statement, the linking value for David
Dvorin in ZIP code 08876 would be
DVORINDAV08876.

Merge Your Databases
Continued from page 1

Complete the resulting database
There’s one more issue to resolve with the resulting
database. You need to make sure all the records from
the source databases are represented in the resulting
database.

If there are records in any of the source databases
not already in the resulting database, you can add
them to the resulting database using Q&A’s Copy
command, copying selected records from one
database to the other. You don’t need to copy all the
fields, just the linking field.

You should now have a resulting database that
contains all the desired fields, and a record for each
record in each source database. All the databases now
have a common link. You can now use this link to run
a Mass Update on the resulting database.

The Mass Update Spec
For your a Mass Update Spec, you can use an
XLookup command that references the newly created
link fields in all the databases to conditionally copy
information from the various source databases to the
resulting database. Here’s a sample Mass Update
program for the resulting database’s link field:

XLookup("Source", Resulting database link field name,
 "Source database link field name",
 "Source database merge field name",
 Resulting database merge field name)

Here’s how this statement breaks down:

• Source is the name of one of the source databases.

• Resulting database link field name is the name you
assigned to the linking field in the resulting
database.

• Source database link field name is the name you
assigned to the linking field in the source
database.

• Source database merge field name is the name you
assigned to a field you want copied from the
source to the resulting database.

• Resulting database merge field name is the name you
assigned to the field you want to receive the value
from the source database.

For example, if one of your source databases is
named CUSTOMER, your resulting database is
named CLIENTS, your link field is named SLink and
RLink in the source and resulting databases,
respectively, and you’re merging the field named Fax

4 The Quick Answer ▲ January 1996 © Marble Publications, Inc.

in CUSTOMER to FaxNumber in CLIENTS, then your
Mass Update program would look like this:

XLookup("CUSTOMER", RLink, "SLink", "Fax", FaxNumber)

You need to include an XLookup statement for
each field being merged from each source database.
For example, if you have three source databases and
one, two, and three fields to merge from each one,
respectively, then you’ll need six Xlookup statements
in the resulting database’s link field.

(Advanced users note: Up to 23 merge fields from
a single source database, along with up to 23 target
fields in the resulting database can be incorporated
into a single XLookup statement.)

After the Mass Update Spec is completed, save it
so you can use it later during the merge process.

Perform the merge
At this point, you should have all the necessary
ingredients. You have a resulting database with all the

fields you want. You have a common linking field in
each source database and the resulting database. And
you have a Mass Update Spec that will retrieve the
data from the source database fields into the
corresponding resulting database fields.

The merge process is nothing more than
performing a Mass Update operation. Your Update
Spec program will tell Q&A to search each source
database, retrieve a field value from it, and place it in
the corresponding field in the resulting database.
When the update is complete, each record in the
resulting database will contain the information from
all the source databases, and your work will be done.

Merging databases this way is sometimes
necessary. Although it can take a little work to
properly set up, an approach like this ensures that the
resulting database contains all the information you
need from the source databases.

David Dvorin owns Phoenix Solutions of Hillsborough, New Jersey,
which specializes in tailoring off-the-shelf software for broad range
of business needs. 908-281-6272, Internet dvorin@bms.com.

Q
U

IC
K

T
IP

Q
U

IC
K

T
IP XUserselect Case-Sensitivity Caveat

XUserselect promises to be among the
most popular programming
commands in QA 5.0 for DOS because
it lets you display a pick-list of values
from an external database. This might
be an external database you’ve set up
exclusively for lookups. (The Q&A 5.0
Application Programming Tools (APT)
manual even states “. . . external
database, if it’s not too large.”) At
other times, though, your pick-list of

values will come from a “real” external database in
which there might be duplicate entries in the
indexed lookup field.

The APT manual also states that “No duplicate
values are displayed.” This is true, but only to a
point. Unlike just about everywhere else in Q&A,
XUserselect is case-sensitive, which means the same
field entry with different capitalization isn’t
considered a duplicate value. Worse yet, if

XUserselect finds an entry in uppercase letters and
the next one in lowercase letters, it will list the
same entry a third time if the next occurrence is
again in uppercase letters.

It’s easy to demonstrate this by retrieving a set
of records with the same entry in the external key
field, and changing just the initial letter of alternate
records like this:

Record 1: Liverpool
Record 2: London
Record 3: london
Record 4: London
Record 5: london
Record 6: London
Record 7: LondoN
Record 8: london

The resulting XUserselect pick-list will include all
these occurrences of London.

Alec Mulvey, Ascot, England

© Marble Publications, Inc. 5The Quick Answer ▲ January 1996

Edited by Dave Reid

Copy a Field’s Value
to Use Later

I have a small problem with a Q&A
application. After I add a new student
record and save it, I run a macro that
prints a mail-merge letter to that stu-
dent. The macro places MAX in the

Retrieve Spec Student ID field, and since the Stu-
dent ID number in the database is auto-incremented,
this technique always prints a letter addressed to the
newly added student. Sometimes, I need to update
an older record and print a merge-letter for that
student, but my “MAX” macro doesn’t work because
the student’s ID number isn’t the highest in the
database. How can I work around this?

Ronnie Lichman, Washington, D.C.

Q&A 5.0’s new Clipboard feature makes it possible to
print a mail-merge letter from the displayed record no
matter when that record was added to the database.
You can redefine the macro so it includes the
following steps:

1. Move to the Student ID field.

2. Press F11, Q&A 5.0’s Copy to Clipboard command
key.

3. Press Shift-F10 to save the record and exit.

4. Get your merge document, and prepare to print it.

5. At the Retrieve Spec, move to the Student ID
field.

6. Press F12, the new Paste from Clipboard command
key.

7. Press F10 as usual to print.

The revised macro will automatically print a
merge document for any record onscreen. F11 and F12
can be used to copy a field’s value to or from a record,
a Retrieve Spec, or even a document.

[Here’s an old Q&A 3.0 trick you can use to get a “MAX”-
based macro to select the last viewed record irrespective of
when it was added to the database. Add a labelless field to
the form in an out-of-the-way place. Name it something
like MaxRecNo, and make it Read-only and Speedy. Next,

program an on-record-exit statement in the database, like
this:

#100 = @XLookupR(@Fn, "999999", "MaxRecNo", "MaxRecNo")
 + 1

This statement (field #100 is MaxRecNo) assigns the
highest number to any record you save. This way, you can
use your MAX retrieval parameter in the MaxRecNo field
to select the last record viewed and saved.—Ed]

Calculate Elapsed Days
Sans the Weekends

I use Q&A for DOS to track my department’s
projects. The database includes a Start Date field, a
Completion Date field, and a Length (length of time)
field. I’ve programmed the Length field like this:

< Length = Completion Date - Start Date

This statement correctly calculates the number of
days it took to complete the project, but I’d like to
improve on the calculation by omitting the week-
ends. Is there a way to have Q&A count just the
weekdays?

Stan Decowski, New Jersey

Sure is. The following program in the Length field
calculates the number of weekdays between the Start
Date and the Completion Date:

< Length = (Completion Date - Start Date)
 - (2 * @Int((Completion Date - Start Date)/7));

If @Instr("MonTueWedThuFri",
@Left(@Dow$(Start Date),3)) >

 @Instr("MonTueWedThuFri",
@Left(@Dow$(Completion Date),3))

Then Length = Length - 2

The program contains two statements. The first
simply fills the Length field with the number of
elapsed days, less two for every seven. The second
conditionally subtracts an additional two days if the
Start Date is later in the week than the Completion
Date. For example, a project that begins on a Friday
and ends on a Monday will work out to three days
after the first statement’s result because there were
zero complete weeks. The second statement corrects
this by subtracting 2, which yields the correct
answer—one weekday. The program assumes that the
Start Date and Completion Date are weekdays.

@
H

E
L
P

@
H

E
L
P

6 The Quick Answer ▲ January 1996 © Marble Publications, Inc.

??

Fix Creeping Envelope
Addresses

I use Q&A to print letters and envelopes for my
business. Whenever I try to print more than one
envelope at a time, the address immediately begins
creeping further down the envelopes. I’ve verified
that my document has some text below the address
block, but the addresses are still on the move. How
can I stop them?

William Ruthrauff, Warwick, Rhode Island

Q&A can print to more than 400 different types of
printers, and each of them has its own way of
handling envelopes. By default, Q&A can easily
communicate correctly with most of them, but a few
require fine tuning.

Q&A provides a special setting to fine tune
envelope printing. To adjust this setting, from the
Q&A Main menu, select Utilities / Install Printer.
Select the Printer (A through E) you use to print your
envelopes, then select the Port, the Manufacturer, and
finally the model. When you select the model, a
confirmation box appears with information specific to
your printer. Read it, then press F8 to set the Special

Printer Options. Press F10 to proceed to the More
Special Printer Options screen. You’ll see an Envelope
Height option. Because your addresses are creeping
down the envelope, you should reduce your
Envelope Height. Begin by reducing it by one, then
print a few envelopes to see how it’s working. If the
address is still moving down, try reducing the setting
even further. Eventually, you’ll find the correct setting
that works for your printer.

[See also “Creeping Envelope Solutions” on page 16 of the
August 1995 issue.—Ed.]

Dave Reid is a Symantec senior support analyst providing second-
level assistance to the technical support representatives. He’s also
the coauthor of The Q&A 4.0 Wiley Command Reference,
published by John Wiley and Sons, and works as an independent
Q&A consultant. PO Box 12083, Eugene, OR 97440.

Have a nagging question? Send it to @Help, The

Quick Answer , Marble Publications, Inc., PO Box

9034, Gaithersburg, MD 20898-9034 or fax to 301-

424-1658. Please include your name, address, and

phone number, along with your Q&A version number

(and whether DOS or Windows) and a detailed

description of the problem. We will publish those

questions we feel are of general reader interest;

individual responses are not possible.

Q
U

IC
K

T
IP

Q
U

IC
K

T
IP

Macro-Driven Report Problem Solved

I had a baffling problem with a macro
that printed a landscape report. The
problem occurred after someone
would change the number of spaces
between columns from “1” to
“Variable” in the Report Global
Format Options. This would cause the
report width to exceed the page
width, and stop the macro at the
Report Too Wide screen. I fixed this by
adding commands to the beginning of

the macro to reset the number of spaces between
columns to 1:

rs filename <enter>cf1<f10><esc><esc>

You can also optionally add the letter “S” (for
Split report across pages) to a macro that prints a
report. You insert it after the “N” that indicates
“No” temporary changes, or after the final <f10> if
the macro steps through some temporary changes.
This way, if the report is too wide, the “S” tells
Q&A to split it across multiple pages, and the
macro won’t be interrupted. (Later, you can
determine which fields caused the width problem,
and restrict them to a maximum length.) If the
report isn’t too wide, the “S” will begin to select Set
Global Options on the Report menu after the report
prints, so be sure to add an extra <esc> to back out
of it.

Michael Schein, Reading, Pennsylvania

© Marble Publications, Inc. 7The Quick Answer ▲ January 1996

Streamline Tasks with Custom
Windows-like Gadgets
Sorry, graphical icons even in Q&A 5.0 are out of the question. But pick-lists,
check boxes, dialog boxes, and buttons . . . Yep, —these we can do.

By Tom Marcellus

Q&A 5.0 brings powerful weapons to the war
on data entry overload. And where it doesn’t
supply the weapons themselves, it gives you

the tools to build them. Despite Q&A for DOS’s non-
graphical interface, you can create data entry gadgets
that simulate some of Windows’ best-loved features
such as form buttons, radio buttons, check boxes,
dialog boxes, and drop-down lists (see Figure 1).
Designed to be used with your mouse, these gadgets
can automate data entry like never before, cutting
keystrokes and errors wholesale. I’ll show you some
situations where they can benefit you most, along
with examples on how to design and program them.

Choose your weapons
Figure 1 shows a Q&A 5.0 demonstration database
with four Windows-like controls: form buttons, radio
buttons, check boxes, and pick-list buttons. I’ll refer to
these gadgets collectively as controls or control fields
because although they’re fields, they don’t store
data—they control data entry
and related tasks. They’re
designed to work in
conjunction with a pointing
device, so if you don’t use a
mouse with Q&A, they
probably won’t be of interest,
at least until you see what they
can do.

Briefly, here’s what the
controls shown in the Figure 1
database do. I’ll cover each
type in detail:

• A partial pick-list for the
SalesRep field is displayed
in the upper right-hand
corner of the screen. The
SalesRep, State, CallBack,
Terms, and Notes fields
are all pick-list fields——
the “▼” pick-list control
character adjacent to them
identifies them as such.

The “▼” is actually a field. As you’ll see, moving
the cursor to an empty field displays its pick-list
automatically. But you must click on the pick-list
control character to display the list for a field
that’s already filled.

• A group of button controls appear in the lower
left area of the form. These simulate buttons in
Windows programs such as Q&A for Windows—
—that is, you click on them to perform tasks. The
Figure 1 form includes buttons to write a Letter,
print a mailing Label, create an Invoice, Print the
record, create a PostIt note, switch to Table view,
perform Lookups, and view the customer’s
Transaction history.

• Five check boxes, Post, Copy, Mark, Xport, and Tag/
Untag all, appear in the lower left area of the
form. Clicking on a check box fills it with an “X.”
This way, a program can make decisions and

Figure 1 . A sample Q&A 5.0 database with form buttons, radio
buttons, check boxes, and pick-list controls to simplify data entry.

8 The Quick Answer ▲ January 1996 © Marble Publications, Inc.

perform actions based on which boxes are
checked. The Tag/Untag all check box lets you
check or clear all the boxes in the group. In Figure
1, the Copy and Mark boxes are checked,
indicating that actions relating to these fields are
to be performed——when the record is saved, for
example.

• A group of four radio buttons, PtrA, PtrB, Disk,
and File, appear between the buttons and check
boxes. They’re called “radio” buttons because like
a radio with push button station selectors, they’re
mutually exclusive. Though they look like check
boxes, only one of the group of four can be
checked. If you click on one to mark it, the other
three are automatically unmarked. In this
database, if you click on PtrB then click on the
Print button, Q&A will print the record to
whatever printer is installed as Printer B.

In addition to these controls, the Figure 1 form
includes a dialog box control that’s visible in Figure 3.
Let’s take a closer look at each type of control.

The pick-list control
You use Q&A 5.0’s list commands—Userselect and
XUserselect—to display a list of field values, usually
as you enter a field. Making your selections from pop-
up lists rather than typing them minimizes keystrokes
and helps avoid errors.

Let’s focus on the SalesRep field in Figure 1.
Notice the “▼” just to the left of it. It’s actually a one-
character field named SalesRepList. SalesRep stores

the sales rep’s name, while SalesRepList displays the
pick-list of sales representatives.

Why two fields? When you’re adding a new
record, SalesRep will be empty, and you’ll want the
pick-list to display when you move to it. Once
SalesRep is filled, however, you probably won’t want
the pick-list to display—rather, you’ll want the option
to display it if, for example, you’re assigning a
different sales rep. The SalesRepList pick-list control
field gives you that option.

SalesRep’s Navigation Spec program passes
control to the SalesRepList field when SalesRep is
empty:

< If SalesRep = "" then goto SalesRepList

This invokes SalesRepList’s program, which displays
the list:

< Userselect("Fred Johnson,Marty Smith,Mary Roberts,
Bill Noonan,EdSchmitz,Karen Aster,Tom Jones,House",
SalesRep);

If SalesRep <> "" then goto Terms
Else {@Msg("Please select a Sales Rep");
goto SalesRepList}

In this example, the Fax field that precedes the
SalesRepList field includes an on-field-exit Goto that
sends the cursor directly to SalesRep, bypassing
SalesRepList. If SalesRep is empty, the pick-list
appears. Once SalesRep is filled, the cursor is sent to
the Terms field. If you try to escape from the pick-list
when SalesRep is empty, the program sends the
cursor back to SalesRepList, which redisplays the list.
The pick-list doesn’t pop-up automatically if the

SalesRep field is filled. In that
case, you must click on the “▼”
to display the list and select
your new sales rep.

The State, Terms, and
CallBack fields—each has a
pick-list—include similar pick-
list control fields. Working in
conjunction with form
Navigation commands, the
tandem fields let you move
around a filled form without
the pick-lists getting in the way.
But you always have the option
to display a list by clicking on
the “▼” field.

You can fill your pick-list
control fields with the “▼”
character (or any character you
choose) by making it an Initial
Value, or by including it in an
on-record-entry program like
this:

Figure 2. You can display a pick-list of callback intervals by moving to
the empty Callback field or by clicking on its adjacent pick-list control
character. See the sidebar, “Choosing a Callback Date” on page 9.

© Marble Publications, Inc. 9The Quick Answer ▲ January 1996

#5: StateList = " ▼"; SalesRepList = " ▼";
 TermsList = " ▼"; CallbackList = " ▼"

To create the “▼” character, press Alt-F10, then
hold down the Alt key and type 31 on the numeric
keypad.

The NotesOpen field (“▼”) adjacent to the Notes
field works a bit differently. It doesn’t display a list,
but opens the field editor for the Notes field. It’s
programmed like this:

< @Fedit; goto Notes

The CallBackList field (“▼”) adjacent to the
CallBack field also works differently than the other

pick-list controls. Rather than display a list of values
for CallBack, it displays a list of callback time intervals.
When you select a callback interval, the program
determines the future callback date, and places that in
the CallBack field. See Figure 2 and the sidebar,
“Choosing a Callback Date.”

Make your pick-list control fields single-character
fields defined with the “<“ and “>“ field delimiters,
and set their background color to the form’s color.
This way, all you’ll see on the form is the “▼”
character.

Now that you’ve seen how the pick-list controls
work, let’s look at the button controls.

The program for the CallBackList field displays a list of
callback time intervals, converts your selection to the
corresponding date, then places it in the CallBack field.
Because a text field for interim calculations is needed
and CallBack is a date field CallBackList serves double
duty as the interim calculation field as well as the pick-
list control field. Here’s CallBackList’s program:

<
@Msg("Select a callback interval for this contact");

Userselect("User-entered date,Today,Tomorrow,
Next weekday,10 days,30 days,60 days,90 days,
A - Monday,B - Tuesday,C - Wednesday,D - Thursday,
E - Friday,F - Saturday,G - Sunday", CallBackList);

If @Instr(CallBackList, "-") = 3 Then
{
CallBackList = @Del(CallBackList, 1, 4);
If @Dow$(@Date + 1) = CallBackList Then

CallBack = @Date + 1
Else If @Dow$(@Date + 2) = CallBackList Then

CallBack = @Date + 2
Else If @Dow$(@Date + 3) = CallBackList Then

CallBack = @Date + 3
Else If @Dow$(@Date + 4) = CallBackList Then

CallBack = @Date + 4
Else If @Dow$(@Date + 5) = CallBackList Then

CallBack = @Date + 5
Else If @Dow$(@Date + 6) = CallBackList Then

CallBack = @Date + 6
Else If @Dow$(@Date + 7) = CallBackList Then

CallBack = @Date + 7
}

Else if CallBackList = "User-entered date" Then
{@Msg("Type in the Callback date and press Enter");
CallBackList = " ▼"; Clear(CallBack); Goto CallBack}

Else if CallBackList = "Today" Then CallBack = @Date

Else if CallBackList = "Tomorrow" Then CallBack =
@Date + 1

Else if CallBackList = "Next weekday" Then
{
If @Dow$(@Date) = "Friday" Then CallBack = @Date + 3
Else If @Dow$(@Date) = "Saturday" Then CallBack =
@Date + 2

Else CallBack = @Date + 1
}

Else if CallBackList = " ▼" then Chome
Else CallBack = @Date + @Tn(@Num(CallBackList));
CallBackList = " ▼"; CHome

To display the days of the week (Monday through
Sunday) on the Userselect list in chronological order,
they’re typed as A–Monday, B–Tuesday, C–
Wednesday, and so forth. The program strips the
prefix from the selected value.

The program’s calculations are based on the
current date. In other words, if you select 30 days, the
program adds 30 days to the current date and places
the new date in the CallBack field. Similarly, if it’s
Thursday, and you select Thursday as the callback
day, the program will place next Thursday’s date in
the CallBack field.

The “User-entered date” selection lets you
manually enter the callback date, so you’ll need a
Navigation Spec program like this in the CallBack
field:

< If CallBack = "" and CallBackList <> " ▼" then
 Goto CallBackList

You’ll also need a program like this in the
CallBack field to restore the “▼” character (The “▼”
character, by the way, is ASCII 16.):

> CallBackList = " ▼"; CHome

Otherwise, the CallBack field works like the other
pick-list fields. If you move to it and it’s blank, the list
displays automatically; otherwise, you must click on
the “▼” to display the list and select a new callback
interval.

Choosing a Callback DateChoosing a Callback Date

10 The Quick Answer ▲ January 1996 © Marble Publications, Inc.

Button controls
Button fields, besides looking cool, can be fabulous
time- and labor-savers. With a single mouse click, you
can perform tasks that might otherwise take dozens
of keystrokes. In a database, buttons can provide
advantages over custom menus. For example, the task
selections are all visible because their buttons are
visible, and it takes just one click to invoke any task.
However, you can always create buttons that do
nothing but display custom menus.

Follow these steps to add a button field to your
form:

1. Decide where to place the button field. You want
to prevent the cursor from entering it unless you
click on it. One option is to place the button at the
bottom of the form, and program the fields just
above it with on-field-exit Gotos to prevent the
cursor from moving further down the form. You
can place buttons along the right edge of the
screen as long the data fields to their left include
navigation Gotos to avoid them.

2. Decide on a “label” for the button. You’ll place
the label in the field, rather than in front of it.

3. When placing the button on the form, use the “<“
and “>“ characters to define it, and make it two
characters wider than its label. This way, you’ll
have a space on either side of the label and the
button will look better.

4. At the Format Spec, center-justify the field using
the T,JC code (JM for justify middle in the Q&A
5.0 beta). This will center the label on the button.

5. At the Field Names Spec, name the field with its
label plus a “Button” suffix. For example, if the
button’s label is Letter, name the field LetterButton
to differentiate it from data fields.

6. At the Palette Spec, set the field’s background
color to contrast with the form’s background
color, then set a contrasting text color for the
label.

7. Add the label text. You can set an Initial Value for
the field, or use an on-record-entry program to
assign the button labels when the form is
displayed. For the eight Figure 1 buttons, such an
on-record-entry program might look like this:

#10: LetterButton = "Letter"; LabelButton = "Label";
InvoiceButton = "Invoice"; PrintButton = "Print";
PostItButton = "PostIt"; TableButton = "Table";
LookupsButton = "Lookups"; TransButton = "Trans"

Programming button fields
Following are some sample programs for the buttons
shown in the Figure 1 form. They should give you
ideas on how you can use buttons to reduce complex
tasks to a single mouse click.

Letter
The Letter button creates a name and address block
(using the LetterButton field for temporary storage)
from the information in the current record, then adds
the date and a Dear FirstName salutation. The macro
called at the end of the program then copies the block
to the Clipboard, restores the LetterButton field, saves
the record, switches to Write, and pastes the text into
the new document in this format:

Fred Smithers
14205 West Bonker
Suite 334
Livonia, MI 48223 January 12, 1996

Dear Fred:

This way, all you have to do is type the text of
your letter and closing, then print it. Here’s the
LetterButton program:

< If FirstName <> "" and LastName <> "" and
 Address1 <> "" and City <> "" and State <> "" and
 Zip <> "" Then
{
If @Askuser("Write a letter to",FirstName + " " +

LastName +"?","") Then
{
If Address2 <> "" Then
 LetterButton = FirstName + " " + LastName + "
" + Address1 + "
" + Address2 + "
" + City + ", " + State + " " + Zip;

If Address2 = "" Then
 LetterButton = FirstName + " " + LastName + "
" + Address1 + "
" + City + ", " + State + " " + Zip;

LetterButton = LetterButton + @Text(15," ") +
@Month$(@Date) + " " + @Str(@Dom(@Date)) + ", " +
@Str(@Year(@Date)) + "
" + "
" + "Dear " + FirstName + ":";

@Macro("Letter to Current Contact")
}
Else Goto FirstName
}

The LetterButton program first makes sure the
appropriate name and address fields are filled, then
asks for confirmation that you want to write a letter
to the current contact. (If you respond with “No,” the
program, in this case, moves the cursor to the
FirstName field. If you’d like to return to the field you
were in when you clicked on the button, see the
sidebar, “Returning From a Control Field.”)

At several places in the program, an opening
double quote mark at the very end of a line is
followed by a closing double quote mark at the

© Marble Publications, Inc. 11The Quick Answer ▲ January 1996

beginning of the next line. This signifies a carriage
return. When typing a program, you can type a
double quote mark, press Enter, then type another
double quote mark to invoke a carriage return. In this
case, the technique places the name, address, and so
forth on separate lines, creating an actual address block.

The Letter to Current Contact macro “presses” F11
to copy the contents of the LabelButton field to the
Clipboard, then opens the Field Editor, deletes the
address block, and restores the Letter label to the
button. Finally, it saves the record, displays the Write
document screen, pastes the address block, then
moves the cursor into position for you to begin typing
the letter. Here’s the macro:

<begdef><nokey><name>"Letter<sp>to<sp>current<sp>contact"
<vidoff><f11><f6><f3><end><end><end><f10><f6>Letter
<capsf10><esc>wt<f12><end><end><enter><enter><enddef>

Label
The Label button prints a predesigned mailing label
for the current record, then returns to the record.
Here’s the program:

< If @Askuser("Print a label for",FirstName +" "+
 LastName + "?","") Then
{
LabelButton = Contact ID;
@Macro("Print Label & Return")
}
Else Goto FirstName

The Print Label & Return macro copies the Contact
ID (temporarily stored in the LabelButton field) to the
Clipboard, then restores the button’s label. It then
saves the record and exits, selects the Shipping Label
from the List of Mailing Labels, pastes the Contact ID
into the Retrieve Spec, and prints the label. Finally, it
returns to the original record by pasting the Contact
ID (still in the Clipboard) into the Contact ID field at
the Retrieve Spec. Here’s the macro:

<begdef><nokey><name>"Print<sp>label<sp>&<sp>return"<vidoff>
<f11><f6><capsf4><f6>Label<capsf10><esc>wmShipping<sp>Label
<enter><f2><f10><tab><f12><f10><enter><esc><esc><esc>fs
<enter><tab><f12><f10><enddef>

Invoice
The Invoice button starts a new invoice for the
customer in the current record. It copies the Contact
ID to the InvoiceButton field and runs the macro.
Here’s the program:

< If @Askuser("Create an invoice for",FirstName +" "+
 LastName + "?","") Then
{
InvoiceButton = Contact ID;
@Macro("Create Invoice")
}
Else Goto FirstName

The Create Invoice macro copies the Contact ID to
the Clipboard, restores the Invoice label, opens the
INVOICE database in Add Data, pastes the ID into

the Customer ID field, then “presses” Enter to execute
the INVOICE program that retrieves the customer
address information into the new invoice. Here’s the
macro:

<begdef><nokey><name>"Create<sp>Invoice"<vidoff><f11>
<f6><capsf4><f6>Invoice<capsf10>a<capsf4><f10>invoice
<enter><f12><enter><enddef>

PostIt
The PostIt button plays a little ditty before shelling
out to another copy of Q&A to add a reminder note to
the POST-IT database. When you exit the second copy
of Q&A, you’re returned to the same record. Here’s
PostIt’s program:

< If @Askuser("Go to Post-it Notes?","","") Then
{
@Play("sound","196,75"); @Play("sound","256,75");
@Play("sound","329,75"); @Play("sound","392,150");
@Play("sound","329,75"); @Play("sound","392,150");

PostItButton = @Shell("D:\QA\QA.COM -alDEMO.ASC -m2");
PostItButton = "PostIt"; Chome
}
Else Goto FirstName

The @Shell command loads the macro file named
DEMO.ASC and invokes its Alt-2 macro, which, in
this case, opens the POST-IT database in Add Data
mode.

Table
The Table button switches from Form View to Table
View. Its program contains just one command:

@Macro("Table View")

The Table View macro displays the Retrieve Spec,
clears it, selects the Sort Spec named Default, then
switches to the default Table View. Here’s what the
macro looks like:

<begdef><nokey><name>"Table<sp>View"<vidoff><f7><f3><f8>
<altf8>Default<enter><f10><altf6><capsf6><f10><enddef>

Trans
The Trans button invokes a macro that displays a
predesigned screen report of the current customer’s
transaction history (showing billings, payments, and
the current outstanding balance, for example). The
program copies the customer’s Contact ID to the
TransButton field, then runs the macro:

< If @Askuser("View transaction history for",FirstName
 +" "+ LastName + "?","") Then
{
TransButton = Contact ID;
@Macro("Display Trans History & Return")
}
Else Goto FirstName

The Display Trans History & Return macro copies
the Contact ID to the Clipboard, restores the Trans
label to the button, then saves and exits the record
and runs the Transactions screen report in

12 The Quick Answer ▲ January 1996 © Marble Publications, Inc.

TRANS.DTF (pasting the Contact ID into the report’s
Retrieve Spec). The macro pauses as the report is
displayed and returns to the same record (again, by
pasting the Customer ID into the Retrieve Spec) when
the F10 resume key is pressed:

<begdef><nokey><name>"Display<sp>trans<sp>history<sp>&
<sp>return"<vidoff><f11><f6><capsf4><f6>Trans<capsf10>
<esc>rp<capsf4><f10>trans<enter>transactions<enter>y<dn>
<f12><f10><f10><f10><wait><f10><vidoff><esc><esc><esc>fs
<capsf4><f10>contacts<enter><tab><f12><f10><enddef>

Lookups
The Lookups button displays a list of all the names in
the database, allowing you to quickly switch to any
record simply by pointing and clicking. This sample
program assumes the database includes a Speedy,
Read-only field named FullName that contains the
contact’s last name, a comma and space, then the first
name. This way, the Lookups program can display the
names in last name order:

< XUserselectR(@Fn, "FullName", "Contact ID",
 "A", "Z", LookupsButton);

If LookupsButton <> "Lookups" Then @Macro("Find
Contact")
Else Chome

The Find Contact macro copies the selected
person’s Contact ID to the Clipboard, restores the
Lookups label, displays the Retrieve Spec, clears it,
pastes the Contact ID, then “presses” F10 to bring up
the selected record. Here’s the macro:

<begdef><nokey><name>"Find<sp>Contact"<vidoff><f11>
<f6><capsf4>Lookups<f6><f7><f3><tab><f12><f10><enddef>

The range on this sample
XUserselectR command is A
through Z—all the names in
the database. If your database
contains hundreds of records,
it won’t make sense to display
all of them—rather, you’ll
want to specify a range of
names to lookup.

Unfortunately, Q&A
doesn’t include a counterpart
to a Windows dialog box that
you could pop-up to type in
the range—but you can create
one. See Figure 3 and the
sidebar, “How to Create a
Custom Dialog Box.”

Check boxes
The five check boxes in the
lower right corner of the
Figure 1 form work differently
than the button fields we’ve

discussed. For one thing, checking them doesn’t
necessarily invoke an immediate action, but serves as
a flag for an action to be initiated when, for example,
your on-record-exit program is triggered.

In the Figure 1 form, the first four check boxes are
named PostCheckbox, CopyCheckbox, MarkCheckbox,
and XportCheckbox. Adopting a naming convention
such as this identifies the field as a control field, so
you won’t inadvertently select it for some
inappropriate task (such as using it as a merge field).

The program for the MarkCheckbox field is
representative of the other check box field programs.
It simply places an “X” in the field if it’s blank, and
clears the “X” if it’s not, like this:

< If MarkCheckbox = "" then MarkCheckbox = "X"
 Else Clear(MarkCheckbox); Chome

The Tag/Untag all check box lets you check or
uncheck all the check boxes with a single mouse click.
Here’s its program:

< If PostCheckbox = "X" or CopyCheckbox = "X" or
 MarkCheckbox = "X" or XportCheckbox = "X" Then
 Clear(PostCheckbox, CopyCheckbox,
 MarkCheckbox, XportCheckbox)
 Else {PostCheckbox = "X"; CopyCheckbox = "X";
 MarkCheckbox = "X"; XPortCheckbox = "X"}; Chome

You can have your on-record-exit program decide
what to do based on which check boxes are marked. It
can also leave some or all of the checked boxes
checked for future reference, or clear them. In the case
of the MarkCheckbox field, you might have your
program initiate an action if the box is checked, but

Figure 3. Your custom “dialog box” (above the buttons) prompts for
the last name of the contact to lookup. The more characters you
enter, the more you narrow down the lookup range.

© Marble Publications, Inc. 13The Quick Answer ▲ January 1996

clear it before initiating the action, like this:

If MarkCheckbox = "X" then {Clear(MarkCheckbox); action }

This way, the box won’t be checked the next time you
display the record.

To design a check box into your form, simply
make it a one-character field using the “<” and “>”
symbols. Place the label to the right of the field
instead of to the left, assign an appropriate name to it
at the Field Names Spec, and use the Palette Spec to
give it contrasting background and text colors. Q&A
won’t regard “labels” that follow fields as genuine
field labels, but you can assign the same color to the
form’s background text and the field labels. This way,
our check box labels will appear in the same color as
the actual field labels and therefore look like labels.

Radio buttons
Radio buttons look like check boxes but act
differently. They’re mutually exclusive; that is, only
one button in the group can be checked. The four

radio buttons in the Print to section of the Figure 1
form, PtrA, PtrB, Disk, and File, are programmed to be
mutually exclusive. Here’s the program for the
PtrBRadio field. The programs for the other three
radio buttons follow the same logic:

< If PtrBRadio = "" Then
{
PtrBRadio = "X"; Clear(PtrARadio, DiskRadio, FileRadio)
}
Else PtrBRadio = ""; Goto @(CurrentField)}

With this program, the PtrB box gets an “X” when
you click on it (it’s cleared if you click on it a second
time), while the other three radio buttons are cleared.
The Goto @(CurrentField) command returns you to the
last data field you were in. See the sidebar,
“Returning From a Control Field.”

In this sample database, the Print button program
requires that one of the radio buttons be checked
before it will run a macro to print the record. If none
of the radio buttons are checked, a message box
appears prompting you to select the output device.
Here’s the Print button’s program:

How to Create a Custom Dialog BoxHow to Create a Custom Dialog Box

A dialog box typically appears and prompts for user
input, accepts the input, stores it, then disappears.
Though Q&A 5.0 doesn’t include a built-in command to
do this, you can create a gadget that looks and
performs just like a dialog box.

Add two labeless fields to your form, one below the
other. Make them about 30 characters in length, and
use the “<“ and “>“ characters to define them. Name
them PromptText and PromptValue at the Field Names
Spec. At the Palette Spec, set their background and text
colors to the same color as the form background. This
way, they’ll remain invisible until you choose to display
them.

Using the Lookups button as an example, you can
use the same Find Contact macro I described earlier,
but change the program in the LookupsButton field to
this:

< If PromptValue = "" Then
{
@Color(PromptText, 15, 0); @Color(PromptValue, 15,
0);
PromptText = "Enter part of last name:";
Goto PromptValue
}
Else
{
XUserselectR(@Fn, "FullName", "Contact ID",
 PromptValue, PromptValue, LookupsButton);
@Color(PromptText, 7, 7); @Color(PromptValue, 7, 7);

Clear(PromptText, PromptValue);
};
If LookupsButton <> "Lookups" Then
@Macro("Find Contact") Else Chome

Figure 3 shows what the screen looks like after
you’ve clicked on the Lookups button and entered the
first few characters of a last name—”bur,” in this case.

The two fields create a serviceable dialog box that
prompts for entry of the lookup range. The
XUserselectR command uses PromptValue as the
starting and ending ranges for the names to include on
the pick-list. The more characters you enter in response
to the prompt, the faster Q&A will display the names,
and the shorter the resulting list will be.

The @Color commands set both fields to white text
on black for the solid box effect. Once you’ve selected
an item from the pick-list (or pressed Esc to abandon
the search), the fields are cleared and returned to their
original colors (white on white, in this case), making
them disappear.

With a single dialog box such as this designed into
your form, you can make it appear whenever you need
to prompt for a temporary variable. You can have your
program specify the PromptText, act appropriately on
the PromptValue, then put the box away. Your program
can even call an @Macro to copy the PromptValue to
the Clipboard for later use.

14 The Quick Answer ▲ January 1996 © Marble Publications, Inc.

<
If PtrARadio = "" and PtrBRadio = ""
and DiskRadio = "" and FileRadio = "" Then
{
@Msgbox(
"Choose an Output device","then click on Print","");
Chome
}
Else
{
If PtrARadio = "X" then @Macro("Print to PtrA")
Else if PtrBRadio = "X" then @Macro(Print to "PtrB")
Else if DiskRadio = "X" then @Macro("Print to Disk")
Else if FileRadio = "X" then @Macro("Print to File")
}

Like check boxes, you can use radio buttons to
determine which of several actions a conditional on-
record-exit program initiates, making execution
dependent on one of the radio buttons being checked.

Conclusion
Adding these Windows-like gadgets to your forms
does more than boost productivity. They’re visually
appealing and provide a friendly interface in which to
perform data entry and related tasks. They require
additional fields and programming, so they might not
be suitable for huge, heavily programmed databases.
For most applications, though, a few pick-list controls
and buttons can make working with Q&A that much
more pleasant and productive.

Tom Marcellus is editor of The Quick Answer and author of PC
World Q&A Bible, published by IDG Books. His QuickClick
Calendar Plus—a time- and activity-tracking database for Q&A
5.0—is available from Marble Publications, publisher of The Quick
Answer.

You might be anywhere on a form—in an address
field, for example—when you decide to mark a check
box or radio button. Though you can always click on
the same address field to return to it, you can
program Q&A to save you the trouble. Here’s how.

Add a one-character labeless field to the form in
an out-of-the-way place. Name it LastField, make it
Read-only, and color it to make it invisible. Next, add
on-field-exit commands to your regular data fields
similar to this one for the Address1 field:

> LastField = "Address1"; Goto Address2

When the cursor exits Address1, “Address1”—its
field name—is copied to LastField. If you’ve pressed
Tab or Enter, the Goto command moves you to
Address2, as you’d expect. But if you click on a
button or check box elsewhere on the form, and if
that field includes Goto @(CurrentField) as its last
command, Q&A will return you to the Address1 field
automatically.

You can also use this technique with buttons
whose programs first ask for confirmation before
performing their task. This way, if you answer “No” to
abort the task, you’ll be returned to the field you were
last in.

Returning from
a Control Field
Returning from
a Control Field

Q
U

IC
K

T
IP

Q
U

IC
K

T
IP Handy Record Tagging/Untagging

I use a field named Tag in my databases
to tag the records I want to print,
retrieve, update, or otherwise include
in a procedure. To make it easier to tag
and untag a record, I use the following
program to toggle the Tag field between
tagged and untagged state:

< #100: If #100 = "X" then #100 = "" Else
#100 = "X"

All I have to do is click on the field to tag (or untag)
it. I use the same method to place an “X” or other
character in Yes and No fields simply by clicking on
them. It works great on questionnaire-type forms.

After I run the procedure that includes the

tagged records, I use DAVE (the Do Anything Very
Easily script recorder) and a Mass Update Spec to
untag all the tagged records. In some applications, I
have a button on the form that runs a Mass Update
Spec named Clear Tags. In others, I have DAVE run
the report then run Clear Tags to clear the tags. The
Update Spec is #1 = "" in the Tag field, and the
attached Retrieve includes an “X” in the Tag field.
This way, Q&A can quickly find just the tagged
records and untag them.

Bob Clark, Rohnert Park, California

[You can use this technique in Q&A for DOS databases
as well by substituting macros for the DAVE scripts.—
Ed.]

© Marble Publications, Inc. 15The Quick Answer ▲ January 1996

The
Program
Spec
By Jeff Nitka

Go for the GOSUBs

WITH Q&A’s GOSUB command, you can
have your program GO to a SUBroutine
field, execute its program, then return to the

original field and execute the rest of the program.
(Pages 83–84 of the Q&A Application Programming
Tools Manual explain GOSUB basics.) GOSUB
programming gives you these advantages:

1. It makes your programming more
comprehensible.

2. It extends the amount of a field’s programming
by transferring some of it to other fields.

3. You avoid retyping blocks of code that perform
the same task.

4. It boosts your program’s efficiency.

I’ll demonstrate the first and second advantages
using my Program Evaluator (EVAL.DTF), a database
that catches Q&A programming errors.

EVAL’s Status field’s program does most of the
work. Without GOSUBs, Status would require some
600 lines of code. With 30 GOSUBs, I kept it to 339.
Moreover, because some of Status’ code is rarely
invoked, I usually don’t want to see it when I’m
reviewing or editing the program. So, I simply copied
that code to another field and tacked a RETURN
statement onto the end of it. Here’s what part of the
program looked like before utilizing the GOSUB:

<#3: If Loc <= Len and (Status <> "Error") then {
 If Lead Token = "LEFTPAREN" then {
 If @Lt(Func,@in(Func,";")-1) = "@D("
 then { Str = ""; #50 = Loc; #51 = Pos; GoSub Ls;
 if Error > 0 then goto #3 } }

The code following the second Then is rarely
called, so I “GOSUB” it to another field (#4), like this:

<#3: If Loc <= Len and (#3 <> "Error") then {
 If Lead Token = "LEFTPAREN" then { GoSub #4;
 If Error > 0 then goto #3 } }

<#4: If @Lt(Func,@in(Func,";")-1) = "@D(" then
 { Str = ""; #50 = Loc; #51 = Pos; GoSub Ls };
RETURN

When your program calls a GOSUB, the target
field must contain a RETURN command to return
program execution to the originating field. (You can

also use the STOP command to halt GOSUB
execution. STOP has the effect of pressing Esc, which
stops all program execution).

To see how the third and fourth advantages work,
consider a line-item invoice database that calculates a
discount based on several factors for each item. The
program retrieves pertinent information on an item,
stores the data in temporary variable fields, computes
the discount, then repeats the process for each
additional item in the invoice. Here’s the program
without a GOSUB. (“Discount = ..” refers to the code
that calculates the discount information.):

< If #1 <> "" then { XLu("ExtFile",#1,"Prod","x#2",
 Var1,"x#3",Var2,"x#4",Var3); Discount = .. };
 If #2 <> "" then { XLu("ExtFile",#2,"Prod","x#2",
 Var1,"x#3",Var2,"x#4",Var3); Discount = .. };
 If #3 <> "" then { XLu("ExtFile",#3,"Prod","x#2",
 Var1,"x#3",Var2,"x#4",Var3); Discount = .. };

Notice the similarity of the code following each
Then command. Instead of retyping or copying these
code blocks, I use another field (named PTR, for
“pointer”) that references fields #1, #2, and #3. This
way, I can use GOSUBs to economize on the
programming:

< If #1 <> "" then { PTR = 1; GOSUB PTR };
 If #2 <> "" then { PTR = 2; GOSUB PTR };
 If #3 <> "" then { PTR = 3; GOSUB PTR };

Here’s PTR’s code:

< XLu("ExtFile", @(PTR),"Prod","x#2", Var1,"x#3",Var2,
 "x#4",Var3); Discount = .. ; RETURN

The more extensive the code to calculate
Discount, the more the technique economizes and
increases program efficiency.

Additional considerations
A GOSUB target field is unique in that the only way
you can pass control to yet another field is by calling
another GOSUB. In other words, you generally can’t
use navigation commands such as CNext, Goto,
CHome, and so forth—they’ll earn you a RETURN
statement missing error message.

Moreover, you have to design the form so you
can’t accidentally enter such fields; you’ll receive a
Too many RETURNs error message, which means that
a RETURN command was encountered with no
pending GOSUB to return to.

16 The Quick Answer ▲ January 1996 © Marble Publications, Inc.

For example, you can have a Yes/No field that
contains Yes if a GOSUB is in process, and structure
your program like this:

< if #1 <> ""
 then { Active = "Yes"; GOSUB PTR; Active = "No" };

The target field (PTR, in this case) would look like
this:

< if Active then { blah; blah; blah; RETURN }

Should the cursor enter PTR, Q&A won’t execute its
program unless Active is set to Yes.

You can also place all the fields called by
GOSUBs on one page and use a navigation
command in the last field on the previous page:

Last Field: > Goto Last Field

To make the page even more inaccessible, you
can place an extra field on it’s first line, and program
it like this:

Extra Field: < Goto Last Field

This way, pressing PgDn from the preceding page
will have no effect.

Jeff Nitka holds a Bachelor of Science degree in mathematics and
computer science. He develops Q&A applications part-time for
Epoch Software, 908-874-3989. Jeff is the author of the Q&A
Program Evaluator, a program debugging utility available from
Marble Publications, Inc.

PO Box 9034
Gaithersburg, MD 20898-9034

Second-Class
Postage Pending at

Rockville, MD

Q
U

IC
K

T
IP

Q
U

IC
K

T
IP

Convert Text
Values to
Money Format
Your routine to convert text values to
money format (October 1995 issue,
page 14) can be programmed more
efficiently, like this:

> If Amount <> "" Then
{
Amount = @Str(@Tonumber(Amount) +
0.001);
Amount = "$" + @Left(Amount,
@Len(Amount) - 1)
}

You can adapt this program to display as many
decimal places as you need. Simply change the
number of zeroes to the right of the decimal point
in the number added. In this case, the .001 adds two
decimal places.

Jim Pogany, Oakville, Ontario, Canada

